VisualAutoshaping

© Cambridge University Technical Services Ltd

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Printed: July 2019 in Cambridge, UK

Creator (Whisker)
Rudolf N. Cardinal

Design and Programming (Whisker)
Rudolf N. Cardinal
Michael R. F. Aitken

Legal Advisor (CUTS)
Adjoa D. Tamakloe

Sales (Campden)
Julie Gill

Contacting the authors:

For information about Whisker, visit http://www.whiskercontrol.com/.

If you have sales enquiries about Whisker, contact Campden Instruments Ltd at http://www.campden-inst.com/.

If you have comments or technical enquiries that cannot be answered by the sales team, contact the authors:

Rudolf Cardinal (rudolf@pobox.com)
Mike Aitken (m.aitken@psychol.cam.ac.uk)
## Table of Contents

### Foreword
1

### Part I VisualAutoshaping
2
1 About VisualAutoshaping ................................................................. 2
2 Required devices ......................................................................... 2
3 Using the task ........................................................................... 3
4 Parameters .................................................................................. 5
5 Task details ................................................................................ 6

### Index
9
Foreword

WARNING
Whisker is a system designed for research purposes only, and should never be used to control medical apparatus or other devices that could endanger human life.

DISCLAIMER
The authors, copyright holders, and distributors disclaim all responsibility for any adverse effects that may occur as a result of a user disregarding the above warning.
1 VisualAutoshaping

1.1 About VisualAutoshaping

Purpose

Autoshaping with computer-generated visual stimuli.

Software requirements

Requires Whisker v2.0 or greater.

Data storage

- Text-based output to disk.
- ODBC data storage to a database (supplied).

Author

Rudolf Cardinal (rudolf@pobox.com).

Copyright

Copyright © Cambridge University Technical Services Ltd

Revision history

- v2.2 (14 July 2003): change to names of devices for consistency with other tasks
- v2.4 (8 March 2007): easier compilation for users.
- v3.0 (12 Jan 2009): Server default changed from "loopback" to "localhost" (Windows Vista compatibility and more general standardization).

1.2 Required devices

The program requires to claim devices in groups named box0, box1, box2... with device names as listed below in bold:

```
# ---------------- Box 0 definition
# INPUTS
line  0   box0  FLOORPANEL_REAR
line  3   box0  MAGNOSEPOKE_CENTRE
line  6   box0  MAGNOSEPOKE_REAR
line  9   box0  LOCOBEAM_LEFT
line  12  box0  LOCOBEAM_RIGHT
line  15  box0  LOCOBEAM_CENTRE

# OUTPUTS
line  24  box0  HOUSELIGHT
line  27  box0  PELLET_CENTRE
line  30  box0  PELLET_REAR

# TOUCHSCREENS
display  0 box0  SCREEN

# ... and so on for each box
```
Please ensure that these devices are available and listed in the device definition file in use by the server. (The snippet above shows an extract from a typical definition file.)

### 1.3 Using the task

When you run the task, the main screen looks as follows:

![Task Screen](image)

You must connect to a Whisker server, claim an operant chamber (box), and set up the parameters for your task. Once that's done, the traffic lights will turn amber. When you are ready, press *Start* to begin the task.

When the task finishes, it saves data to disk and pops up a new dialogue box for you to select a database to store the data to. (The data sources are configured under *Control Panel* → *ODBC.*) If you previously specified an ODBC data source in the parameters, that data source is used automatically and you will only see a dialogue box if something goes wrong and the program needs your input.
A Machine Data Source is specific to this machine, and cannot be shared.
"User" data sources are specific to a user on this machine. "System" data sources can be used by all users on this machine, or by a system wide service.
1.4 Parameters

The parameters dialogue box looks like this:

To pick an ODBC database in advance of finishing, click Pick and you will be offered the ODBC Data Source picker (below). Your choice will be recorded and will apply to this subject from now on (or until you specify a different source).
If you don't specify an ODBC data source now, or you delete the value in the "ODBC data source name" box, you'll be asked to choose when the task ends (and that choice will only apply to the session in progress).

### 1.5 Task details

Task is a series trials.

Typical stimuli look like this:
Sample experimental methods

A sample that may be wholly inappropriate for your experiment, but which represents a typical way of using the VisualAutoshaping task!

**Apparatus.** Autoshaping was assessed in the apparatus shown in Figure … Briefly, the apparatus consists of a X × Y × Z cm testing chamber with a display screen on one wall and a pellet dispenser located centrally in front of the display. Pressure-sensitive areas of floor (each X × Y cm) were located directly in front of the display, to the left and right of the dispenser, and also centrally at the rear of the chamber [AND THESE DAYS, INFRA-RED BEAMS TOO, AND AN EXTRA PELLET DISPENSER]. The apparatus was controlled by software written in C++ by R.N. Cardinal using the Whisker control system (Cardinal & Aitken, 2001).

**Pretraining [NOT SUPPORTED BY THIS TASK].** Rats were first given one session in order to habituate to the test chamber and to collect 45-mg food pellets (Rodent Diet Formula P, Noyes, Lancaster, NH) from the food receptacle. The houselight was illuminated and subjects were placed in the chamber for 5 min with 4–5 pellets placed in and around the dispenser. After this, pellets were delivered on a VT 0–40 s schedule for 15 min.

**Acquisition (CS+→food, CS→?0).** On the next day, rats were trained to associate stimuli with the delivery of pellets. Stimuli consisted of 8 × 18 cm [MEASURE ON YOUR APPARATUS] white vertical rectangles displayed on the left and right of the screen for 10 s. One was designated the CS+ and the other the CS−, counterbalanced between subjects. A trial consisted of presentation of both the CS+ and CS− in a randomized order. Following a VI of 10–40s, the program waited for the rat to be located centrally at the rear of the chamber [OR AS SET BY THE TRIGGER CRITERION]; this eliminated chance approach to the stimuli, ensured equal
stimulus sampling and allowed accurate measurement of approach latency. One stimulus was then presented for 10 s. The CS+ was always followed immediately by the delivery of food; the CS– was never followed by food. After this, another VI followed, the program waited for the rat to return to the rear of the chamber, and the other stimulus was presented. This procedure ensured that the minimum time between CS+ and CS– presentation was 10 s, and that there were never more than two consecutive presentations of either the CS+ or the CS–.

When a stimulus was presented, activation of one of the two floor panels in front of the screen [L/ R BEAMBREAK THESE DAYS, OR TOUCHING THE STIMULUS] was scored as an approach, and no further approaches were scored during that stimulus presentation. Rats were trained for a total of 100 trials (two days with 50 trials per day). Approaches to the CS+ and the CS– were scored in blocks of 10 trials and mean approach latency was calculated over 100 trials (Bussey et al., 1997a).

Probe trials (CS+ and CS–). After acquisition, a probe test was performed, consisting of 20 trials in which the CS+ and CS– were presented simultaneously and approaches were measured. Food was not delivered, so this test constituted an extinction trial to the CS+, while the CS– was still a perfect predictor of food absence. The probe test was intended to be a more sensitive test than the acquisition task (in which the subject might form CS–US associations perfectly and yet approach all stimuli), as it forced the subject to make a choice between the CS+ and the CS–.

Omission training. Finally, the contingencies were altered such that approaches to the CS+ prevented the delivery of a food pellet. This manipulation introduced an instrumental contingency directly opposed to the approach response. All other parameters remained the same as in the acquisition phase. There were 50 presentations of the CS+ and of the CS– per session and two sessions were given. As before, only initial approaches were scored; 'successful' omission trials were those in which the CS+ was presented and the subject first approached the CS–, or failed to approach either stimulus.
Index

- V -

VisualAutoshaping
  about 2
  parameters 5
  required devices 2
  using 3