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Statistics

Rudolf N. Cardinal

NST IB Psychology 2003–4
Practical 3 (Thu 22 & Fri 23 January 2004)

4. Difference tests — nonparametric tests

Objectives

This time, we’ll discuss some nonparametric difference tests. If you recall, non-
parametric tests generally have lower power than parametric tests, but make fewer
assumptions about the distribution of the data, so they may be valid when parametric
tests are not. These are the rough equivalents of the parametric and nonparametric
tests we’ve looked at:

Parametric test Equivalent nonparametric test
Two-sample unpaired t test Mann–Whitney U test (≡ Wilcoxon rank-sum test)
Two-sample paired t test Wilcoxon signed-rank test with matched pairs
One-sample t test Wilcoxon signed-rank test, pairing data with a fixed value

They assume that the variable is measured on at least an ordinal scale. (That’s it.)

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

4.1 Background

Nonparametric tests often operate on the rank order of a set of numbers, rather than
on the numbers themselves. This also means that nonparametric tests are less af-
fected by outliers (a few extreme scores) than parametric tests. Outliers may make
parametric tests less powerful (they increase the variance as well as distorting the
mean), sometimes less powerful than the nonparametric equivalent.

It should be obvious how ranking ‘removes’ information about the distribution. The
scores {2,8,10,12,14,24} might have come from a normal distribution and the scores
{1,2,3,100,101,102} might have come from a bimodal distribution, but both reduce
to the ranks {1,2,3,4,5,6}.

How to rank data (repeated from Handout 2)

Suppose we have ten measurements (e.g. test scores) and want to rank them. First,
place them in ascending numerical order:

5 8 9 12 12 15 16 16 16 17

Then start assigning them ranks. When you come to a tie, give each value the mean
of the ranks they’re tied for — for example, the 12s are tied for ranks 4 and 5, so
they get the rank 4.5; the 16s are tied for ranks 7, 8, and 9, so they get the rank 8:

X: 5 8 9 12 12 15 16 16 16 17
rank: 1 2 3 4.5 4.5 6 8 8 8 10

4.2 The Mann–Whitney U test (for two independent samples)

This is a nonparametric analogue of a two-sample unpaired t test. Its null hypothesis
is that the two samples were drawn from identical populations (rather than the t
test’s null hypothesis that the two samples were drawn from populations with the
same means). So a ‘significant’ Mann–Whitney result might be due to a difference
between the central tendency of the two populations (like a ‘significant’ t test) but it
might also have been due to some other difference, such as a difference in the distri-
butions of the populations. If we assume the distributions are similar, a significant
Mann–Whitney test suggests that the medians of the two populations are different.

Basic logic of the test
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Let’s suppose we have two samples with n1 and n2 observations in each (n1 + n2 = N
observations in total). We can rank them, lowest to highest, from 1 to N. If the two
samples come from identical populations, the sum of the ranks of ‘sample 1’ scores
is likely to be about the same as the sum of the ranks of ‘sample 2’ scores. If, on the
other hand, sample 1 comes from a population with generally much lower values
then sample 2, then the sum of the ranks of ‘sample 1’ scores will be lower than the
sum of the ranks of ‘sample 2’ scores.

Calculating the Mann–Whitney U statistic

1. Call the smaller group ‘group 1’, and the larger group ‘group 2’, so n1 < n2.
(If n1

 = n2, ignore this step.)
2. Calculate the sum of the ranks of group 1 (= R1) and group 2 (= R2).
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5. The Mann–Whitney statistic U is the smaller of U1 and U2.

Check your sums: verify that U1 + U2 = n1n2 and 
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It doesn’t matter which numbers you call U1 and U2, since all you do is take the
smaller. Incidentally, why this formula for R1 + R2? Because if you add consecutive

numbers from 1 to x, the total is 
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Determining a significance level from U

If n2 is small, look up the critical value of U in tables — values of U smaller than
the critical value are significant. If n2 > 20, the U statistic is approximately nor-

mally distributed; mean 
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and test that in the usual way (see Handout 1).

Example

Borrowing an example from Howell (1997, p. 651), suppose we imagine that we
collect information on birth weights of babies whose mothers received prenatal care
either from the first trimester onwards or from the third trimester onwards. Suppose
these birthweights, in kg, were {1.68, 3.83, 3.11, 2.76, 1.70, 2.79, 3.05, 2.66, 1.40,
2.775} for the first trimester group and {2.94, 3.38, 4.90, 2.81, 2.80, 3.21, 3.08,
2.95} for the third trimester group. If we chose to calculate a Mann–Whitney test on
these data, we would calculate the ranks as {2, 17, 14, 5, 3, 7, 12, 4, 1, 6} for the
first trimester group (n = 10, rank sum = 2 + 17 + 14 + … = 71) and {10, 16, 18, 9,
8, 15, 13, 11} for the third trimester group (n = 8, rank sum = 100). We’d therefore
call the third trimester group ‘group 1’, because it’s the smaller, and the first tri-
mester group ‘group 2’. So we have n1 = 8, n2 = 10, R1 = 100, R2 = 71. From this we
can calculate U2 = 64, U1 = 16. The Mann–Whitney U is the smaller of these, i.e. 16.

From tables we can find that the critical value of U for these values of n and a two-
tailed test at α = 0.05 is 17. Our U is less than this, so it’s significant; we reject the
null hypothesis, and say that there’s a difference between the birthweights of our
two sets of babies, p < 0.05.

If our ns had been larger, we could have calculated a Z score. Pretending for a mo-
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ment that our ns were larger, for these data z = –2.13, corresponding to p = 0.033.

For the same data, a two-sample unequal-variance t test would have given p = 0.063,
and a two-sample equal-variance t test would have given p = 0.066. This is an ex-
ample when a nonparametric test has more power because the assumptions of the
parametric test — in this case normality of the underlying distribution — were not
met.

4.3 The Wilcoxon matched-pairs signed-rank test (for two related samples)

This is a nonparametric test for paired scores. It’s the nonparametric analogue of the
t test for related samples (the paired t test). The null hypothesis is that the distribu-
tion of differences between the pairs of scores is symmetric about zero. (Since the
median and the mean of a symmetric population are the same, the null hypothesis
can be restated either as ‘the differences between the pairs of scores are symmetric
with a mean and a median of zero’.)

Let’s do this as a worked example (borrowed from Howell, 1997, p. 653). Suppose
10 subjects have their systolic blood pressure measured (BP1), engage in a running
program for 6 months, and then have their systolic blod pressure measured again
(BP2). We can calculate the difference for each subject as BP2 – BP1. If there’s no
difference between the ‘before’ and ‘after’ scores, there should be about as many
differences that are positive as there are differences that are negative…

Calculating the Wilcoxon matched-pairs signed-rank statistic, T

The procedure is:
1. Calculate the difference scores.
2. Ignore any differences that are zero.
3. Rank the difference scores, ignoring their sign (+ or –).
4. Add up all the ranks for difference scores that were positive; call this T+.
5. Add up all the ranks for difference scores that were negative; call this T–.
6. The Wilcoxon matched-pairs statistic T is the smaller of T+ and T–.

Check your sums: verify that
2
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Here’s a worked example:
Before (BP1): 130 148 170 125 170 130 130 145 119 160
After (BP2): 120 148 163 120 135 143 136 144 119 120

Difference (BP1 – BP2): 10 0 7 5 35 –13 –6 1 0 40

Rank of difference (ignoring zero differences and
sign):

5 4 2 7 6 3 1 8

‘Signed rank’ 5 4 2 7 –6 –3 1 8
Ranks of positive differences: 5 4 2 7 1 8
Ranks of negative differences: 6 3

The ‘signed rank’ row is what gives the test its name; it’s what you get when you
put the signs (+ or –) from the difference scores back on the ranks you calculated by
ignoring those signs. But you don’t need to do this to calculate T.

The difference scores don’t appear to be anything like normally distributed, so we
want to use a distribution-free (nonparametric) test. We can calculate n = 8 (since
we ignore zero differences), T+ = 5 + 4 + 2 + 7 + 1 + 8 = 27, and T– = 6 + 3 = 9.
Therefore the Wilcoxon statistic T = 9.

Determining a significance level from T

For small n, look up the critical value of T in tables — values of T smaller than the
critical value are significant. If n > 20, the T statistic is approximately normally

distributed; mean 
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and test that in the usual way (see Handout 1).

4.4 Using the Wilcoxon signed-rank test as a one-sample test

The Wilcoxon signed-rank test may also be used to test whether the median of one
group of scores is significantly difference from some expected value M. In this case,
the null hypothesis is that the median is equal to M. Calculate a difference score (x –
M) for each score x, and proceed as above.

4.5 Supplementary and/or advanced material

The Wilcoxon rank-sum test (not the same as the Wilcoxon signed-rank test!)

There are actually two tests based on the logic used for the Mann–Whitney U test:
they are the Mann–Whitney U test itself and the Wilcoxon rank-sum test. They’re di-
rectly equivalent: both will give the same p value. (Some people even mix the names
up, calling U a Wilcoxon rank-sum statistic, which confuses everybody.) The
Mann–Whitney U test is more popular and has a name that’s not so easily confused
with the Wilcoxon signed-rank test. However, the Wilcoxon rank-sum calculations
make it a bit clearer how we get a statistic out of the sums of a set of ranks, so I’ve
included it here only in case you want to understand how the two tests work.

1. Call the smaller group ‘group 1’, and the larger group ‘group 2’, so n1 < n2. (If
n1

 = n2, ignore this step.)
2. Calculate the sum of the ranks of group 1 (= R1) and group 2 (= R2).
3. If n1 < n2, then WS = R1. If n1 = n2, then WS = whichever of R1 and R2 is smaller.
4. Calculate SS WnnnW −++=′ )1( 211 .

Now we evaluate WS and SW ′  using tables. The smaller WS is, the more likely it is to

be significant. WS will be significant (small) if the smaller group (group 1) contains
significantly smaller-than-average ranks, or if the larger group (group 2) contains
significantly larger-than-average ranks, i.e. if group 1 < group 2. SW ′  is the sum of

the ranks we would have found if we reversed our ranking and ranked from high to
low; it will be significant (small) if group 2 > group 1. Normally we want to test for
a two-tailed difference between groups; we’d then pick whichever of WS and SW ′  is
the smaller and look up the critical values in tables (doubling α if the table gives
one-tailed values).

Two other ways of calculating the Mann–Whitney U statistic

This shows the equivalence of the Wilcoxon rank-sum and Mann–Whitney tests:
1. Compute WS and SW ′  as above. Let SW ′′  be whichever of the two is larger.

2. The Mann–Whitney statistic SW
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A third method is this:
1. For each observation in group 1, count the number of observations in group 2

that exceed it (score 0.5 for equality). Sum these values to obtain U1.
2. Do the same for group 2 to obtain U2.
3. The Mann–Whitney statistic U is the smaller of U1 and U2.
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