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Statistics

Rudolf N. Cardinal

NST IB Psychology 2003–4
Practical 4 (Tue 2 & Wed 3 March 2004)

5. χ2 test

Objectives

We’ll cover the chi-squared (χ2) test for categorical data (goodness-of-fit test) and
extend it to examine whether two categorical variables are related (contingency test).
By the way, chi is pronounced kai, not chai. Related supplementary material is pre-
sented for those who are interested.

Stuff with a solid edge, like this, is important.

But remember — you can totally ignore stuff with single/double wavy borders.

5.1 The chi-squared (χ2) test

One categorical variable, two categories

The χ2 test, sometimes called Pearson’s χ2 test, is all about analysing categorical
data. Suppose we ask 100 people to choose between chocolate and garibaldi biscuits
(so every person falls into one of two categories); 65 choose chocolate and 35
choose garibaldi. Does this differ from chance, i.e. a 50:50 split? The expected val-
ues based on the null hypothesis are 50 chocolate and 50 garibaldi. The observed
values are 65 and 35. From this, we can calculate the χ2 statistic:
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where O is the observed frequency in each category, and E is the expected fre-
quency. We sum over all the categories. A big χ2 means that the observed fre-
quencies differ considerably from the expected frequencies. (Significant values
of χ2 are big. Non-significant values of χ2 are close to zero.) If we have c catego-
ries, we have c – 1 degrees of freedom.

This is called a goodness-of-fit test. It asks whether the data (observed values, O)
are a good fit to some model (expected values, E).

So in this example, 9
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since we know n (100), then as soon as we know the frequency of one category
(chocolate) we automatically know the frequency of the other (garibaldi). So we

have only 1 df. All we need now is to know the critical value of 2
1χ  for our chosen

value of α (say 0.05); our handy statistical tables will tell us that this is 3.84. Since
our χ2 value was 9, we can reject the null hypothesis and say that people’s prefer-

ences differed from chance ( 2
1χ = 9.0, p < .05). If we were using a computer, we

could derive an exact p value for our χ2 value of 9 — it’s 0.0027 — so we could re-
port our biscuit analysis like this: ‘The group’s preference differed from chance

( 2
1χ = 9.0, p = .0027).’

Note that although the process of testing χ2 involved a one-tailed test (was χ2 bigger
than a critical value?), the process of obtaining the value of χ2 was inherently two-
tailed (the way we calculate χ2 detects observed values that are bigger or smaller
than the expected value). So the α we use to obtain a critical value of χ2 is effectively
a two-tailed α. For more details on this, see Howell (1997, p. 144).

One categorical variable, more than two categories

This approach can be used for any number of categories, and any expected values.
So if a furniture warehouse stocks a vast number of chair backs, chair seats, and
chair legs, then we could take random samples of items, classify each item in the
sample into one of these three categories (c = 3), and test the hypothesis that in the
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total stock (the population) these items were in the correct chair-building ratio 1:1:4

using a 2
2χ  test (note 2 degrees of freedom = c – 1).

More than one categorical variable (contingency tests)

We’re often interested in data that’s classified by more than one variable, and in
asking whether these variables are independent of each other or in some way contin-
gent upon each other. Here’s an example (see Howell, 1997, p. 144), based on a
1983 study of jury decisions in rape cases. Decisions were classified on two vari-
ables: (1) guilty or not guilty; (2) whether the defence alleged that the victim was
somehow partially at fault for the rape. The researcher analysed 358 cases:

Obtained values Guilty verdict Not guilty verdict Total
Victim portrayed as low-fault 153 (a) 24 (b) 177
Victim portrayed as high-fault 105 (c) 76 (d) 181
Total 258 100 358

Now if these two variables (verdict and victim portrayal) are independent, then we
would expect that a/b = c/d and that a/c = b/d. But if they are not independent, we
might expect a different picture. We can use a χ2 test to answer this question. This is
called a contingency test, because it asks whether one variable is in some way con-
tingent upon the other. The null hypothesis is that the two variables are independent.
We can calculate the expected value of each cell as follows:
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where E(rowi, columnj) is the expected value of the cell in row i and column j, Ri is
the row total for row i, Cj is the column total for column j, and n is the overall total
number of observations.

For our example, we can calculate that E(1,1) = (177 × 258)/358 = 127.559. We can
fill in all the other expected values like this:

Expected values Guilty verdict Not guilty verdict Total
Victim portrayed as low-fault 127.559 49.441 177
Victim portrayed as high-fault 130.441 50.559 181
Total 258 100 358

Then we can calculate χ2 in the usual way:
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In general, if we have a table with R rows and C columns, we have (R – 1)(C – 1)
degrees of freedom. This method extends to any R × C table.

So in our example, there are four numbers to sum over (you should obtain the an-
swer χ2 = 35.93), and we have (2–1)(2–1) = 1 df. This should make sense: once you
know the row and column totals, you need to know only one cell frequency to be

able to work out all the others. The critical value of 2
1χ  for α = 0.05 is 3.84, so we

reject the null hypothesis. When the victim was portrayed as low-fault, the defendant
was found guilty 86% of the time, but when the victim was portrayed as high-fault,
the defendant was convicted only 58% of the time, and this is a significant differ-

ence ( 2
1χ = 35.93, p < 0.001).

Assumptions of the χ2 test

All statistical tests have assumptions. If they are violated, using the test is pointless:
the results of the test will not be the probabilities we’re interested in, and therefore
our conclusions will be meaningless. This is what the χ2 test assumes:

• Independence of observations. In all the examples given so far, each observa-
tion has been independent. One person didn’t affect another’s biscuit choice,
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and one court case didn’t affect another. If this is not the case, you can’t use a χ2

test. In particular, one thing you mustn’t do is to analyse data from several sub-
jects when there are multiple observations from one subject, because they won’t
be independent. (It’s possible to analyse data from only one subject, because the
observations are then equally independent, but your conclusion will only tell
you something about that one subject.)

• Normality. There shouldn’t be any very small expected frequencies (none less
than 5), otherwise the data won’t approximate a normal distribution.
(Actually, the "none <5" rule is a bit conservative; it's probably OK to use the
test with even smaller expected frequencies if the row totals aren't too dissimilar
and neither are the column totals; see Howell, 1997, p. 152 - but no expected
value can be zero!)

• Inclusion of non-occurrences. To see what this means, let’s take an example.
Suppose that 17 out of 20 men supported the sale of alcohol in petrol stations,
and 11 out of 20 women did. We want to know if significantly more men than
women support this idea. This would be wrong:

Obtained values Men Women
Support booze 17 11

This would give us expected values of 14 and 14 under the null hypothesis of

‘no difference’, and therefore 2
1χ  = 1.29 (not significant). But this is wrong be-

cause we’ve lost information about the total number of responders. We should
be doing this:

Obtained values Men Women
Yes to booze 17 11

No 3 9

This would give us 2
1χ  = 4.29 (p = 0.038). Including information on non-

occurrences is vital — suppose we’d interviewed 2000 men and 17 said yes:
Obtained values Men Women

Yes to booze 17 11
No 1983 9

We’d have a totally different picture, which the first table would have missed
completely.

5.2 Supplementary material: odds ratios and relative risk

Although a χ2 test may tell you that two variables are associated, it won’t tell you by
how much. One way of doing this is by using the odds ratio. Here’s some 1998 data
in which 20,000 male physicians were given daily aspirin or placebo for some time,
and the incidence of heart attacks monitored.

Heart attack No heart attack Total
Aspirin 104 (a) 10,933 (b) 11,037
Placebo 189 (c) 10,845 (d) 11,034
Total 293 21,778 22,071

The probability of someone in the aspirin group having a heart attack was a/a+b =
0.94%. The probability of someone in the placebo group having a heart attack was
c/c+d =  1.7%. The probability ratio or relative risk is therefore a/a+b ÷ c/c+d = 0.55
(or, taking the reciprocal of this, 1.82). The odds of someone in the aspirin group
having a heart attack were a/b = 0.0095 (see Handout 1 for definition of odds). The
odds of someone in the placebo group having a heart attack were c/d = 0.0174. The
odds ratio is a/b ÷ c/d = ad/bc = 0.54 (and its reciprocal, bc/ad, is 1.83). So these men
were about half as likely to have a heart attack if they were on aspirin.

Probability versus odds: be careful

Applying this technique to the rape jury data above might lead you to the conclusion
that the jury were five times as likely to acquit if the defendant was portrayed as
being at fault. The probability of conviction in the low-fault condition was 0.86,
equivalent to odds of 6.40. The probability of conviction in the high-fault condition
was 0.58, equivalent to odds of 1.38. The odds ratio is therefore 4.6 (or 0.22 de-
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pending on which way round you view it). However, the probability ratio (relative
risk) is only 1.49 (or 0.67) and the absolute risk increased by 0.86 – 0.58 = 0.28.
Were the jury 4.6 times as likely to convict if the defendant was portrayed as being
at fault, or 1.5 times? This depends on what you mean by ‘as likely’! Remember that
probability = odds/(1+odds). The odds on them acquitting were increased 4.6
times; the probability was increased 1.5 times.

To get a feeling for these counter-intuitive numbers, consider a couple of examples.
Take a 100-kg sack of potatoes that are 99% water. If you dried out the potatoes
completely, they’d have a mass of 1 kg. What would their mass be if you dried them
out partially, until they were 98% water? The answer is 50 kg. So consider a group
of patients that has a 99% chance of dying from the disease. If you give them a drug
that reduces their probability of dying to 98% (so relative risk of dying: 0.98/0.99 =
.9899), you have halved their odds of dying from 100:1 to 50:1 (odds ratio 0.5). But
beware another property of relative risk: it matters which way round you view
things. The patients’ chance of survival has increased from 1% to 2% (relative risk
of surviving: 0.02/0.01 = 2, which is nothing like the reciprocal of the relative risk
of dying) but their odds of survival have increased from 1:100 to 1:50 (odds ratio 2,
which is exactly the reciprocal of the odds ratio of dying).

Be careful not to be misled by papers that report odds ratios. If the overall event rate
is low, odds ratios and relative risk are very similar; if high, they can be very differ-
ent. The mathematical properties of odds ratios encourage their use (you can’t dou-
ble a probability of 0.6, for example), and they can be used in studies where you do
not know the absolute probabilities (risks) of something happening (e.g. clinical
case–control studies). However, they don’t reflect our intuitive view of probability
very well. Perhaps the clearest way to report these things is to give absolute prob-
abilities, if you can, and then readers can work out all the other measures.

5.3 Supplementary material: the binomial distribution

Where does the χ2 test come from? Read on if you’re interested…

Imagine you have a coin that you flip a number of times. Each time, there are only
two possible outcomes (heads or tails). If it’s a fair coin, the probability of a head on
each trial, call it p, is 0.5. Let’s call the probability of a tail q; also 0.5. If you flip the
coin five times, what is the probability that you get five heads? There’s only one
way to do this — HHHHH. So the probability is 0.5 × 0.5 × 0.5 × 0.5 × 0.5 = (0.5)5

= p5 = 0.03125. Similarly, the probability of zero heads, i.e. five tails (TTTTT), is q5

= 0.03125 as well. But if you flip the coin five times, what’s the probability that you
get three heads? This is trickier, because there are several ways to do it. You might
throw HHHTT, or HHTTH, or TTHHH… the probability of each pattern is (0.5)5,
but we’d like an easy way to work out the number of ways of getting three heads.

Permutations and combinations

We might as well make this general. If we have n lottery balls in a lottery ball ma-
chine, and we draw out r of them in a particular order, the number of ways we could

draw them is called the number of permutations, written n
rP . For example, if there

are 50 balls in the National Lottery and we draw out 6 of them, then one permutation
is {1,2,3,4,5,6}; another is {6,5,4,3,2,1}; another is {17;42;22;5;38;9}. Since we
don’t care about the order of the balls in the lottery, we can also talk about the num-

ber of combinations of drawing r balls out of n balls, or n
rC  — combinations are

the same as permutations except that they don’t care about the order, so
{1,2,3,4,5,6} and {6,5,4,3,2,1} count as two separate permutations but are just two

ways of writing the same combination. We can calculate n
rP  and n

rC  very simply

once we know what factorial means: 6 factorial, written 6!, is 6 × 5 × 4 × 3 × 2 × 1.
So, written mathematically, here’s what we need to know:
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We can use this to find out that there are 700,890,15
!44!6
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possible outcomes in the National Lottery. But we can also use it to find out that

there are 10
!2!3

!55
3 =

×
=C  ways of flipping three heads in five coin flips.

The binomial distribution

Since we know that the probability of any particular sequence of five coin flips is
(0.5)5 = 0.03125, we now know that the probability of flipping three heads is 10 ×
(0.5)5 = 0.31. In general, if we have n independent trials, each of which has two
outcomes, one of which we’ll call ‘success’ and one of which we’ll call ‘failure’,
where the probability of success is p and the probability of failure is q = 1 – p, and X
is a discrete random variable representing the number of successes, then the prob-
ability of r successes, written P(X = r), is given by the binomial distribution:

rnrn
r qpCrXP −== )(

We would call this distribution B(n, p). We can calculate the mean (the expected
value) and the variance of B(n, p):
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In other words, the mean number of heads in five coin flips is 5 × 0.5 = 2.5, and the
variance of this is 5 × 0.5 × 0.5 = 1.25 (so the standard deviation is √1.25 = 1.12).

Using the binomial distribution as a statistical test

If a gambler inveigles us into a betting game, flips a coin 100 times and obtains 90
heads, is the coin fair? The null hypothesis is that the coin is fair (p = q = 0.5), and
the observed number of heads was observed by chance. If the null hypothesis is true,
then the number of heads in 100 flips should obey the binomial distribution B(100,

0.5). The probability of obtaining 90 heads is therefore 1090100
90 5.05.0)90( CXP == .

But we’re actually interested in the probability of obtaining 90 or more heads. We
therefore want to know P(X ≥ 90) = P(X = 90) + P(X = 91) + P(X = 92) + … + P(X
= 100); a bit of calculation gives the answer P(X ≥ 90) = 1.53 × 10–17. This is con-
siderably less than our conventional α of 0.025 (we’d be using a two-tailed test here,
since we’d want to detect a bias in either direction, so α = 0.025 for each tail); we
would therefore reject the null hypothesis and accuse the gambler of fraud. The
clever fraudster would do better to use a very slightly biased coin: if he flipped 60
heads, P(X ≥ 60) = 0.028, so a two-tailed test with overall α = 0.05 wouldn’t reject
the null hypothesis of a fair coin. We’d need to observe the slightly biased coin for
longer (more trials) to be able to detect it. This is a general principle of statistics:
more observations help you detect smaller effects.

The normal distribution as an approximation to the binomial distribution

For large sample sizes (e.g. np > 5 and nq > 5), the binomial distribution B(n, p) ap-

Probability (y axis) of all possible total numbers of heads observed (x axis) when you flip a coin 1, 2, 10, or 40 times
(from left to right). The binomial distribution approximates a normal distribution as n increases.
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proximates the normal distribution N(np, npq) — that is, a normal distribution with
mean np and variance npq (see figure).

5.4 Supplementary material: the sign test

The sign test (sometimes called the Fisher sign test) evolves from the binomial test
and is very simple indeed. Using an example borrowed from Howell (1997, p. 127),
suppose we want to test whether people that know each other are more tolerant of
individual differences. We might ask a dozen male first-year students to rate the
physical attractiveness of a dozen other first-years (of the same sex) at the start and
the end of the year. Suppose the median ratings (high = attractive) are as follows:

Target 1 2 3 4 5 6 7 8 9 10 11 12
Start 12 21 10 8 14 18 25 7 16 13 20 15
End 15 22 16 14 17 16 24 8 19 14 28 18
Gain 3 1 6 6 3 –2 –1 1 3 1 8 3

The sign test looks at the sign (direction), but not the magnitude (size) of each dif-
ference. The null hypothesis is that there is no change in rating. Ignoring gains of 0
(which we don’t have here anyway), the null hypothesis would therefore predict that
by chance, about half the ratings would improve and about half would worsen, i.e.
p(higher) = p(lower) = 0.5. In our hypothetical data set, we have 10 improvements
out of 12 targets. We want to calculate P(X ≥ 10) = P(X = 10) + P(X = 11) + P(X =
12). Using the binomial distribution B(12, 0.5), we know that P(X = 10) =

21012
10 5.05.0C , and so on; the total P(X ≥ 10) is 0.0192. As this is less than our tradi-

tional α = 0.05, we would reject the null hypothesis and say that there was a signifi-
cant change in rating over the year.

The sign test using the normal approximation to the binomial distribution

For the null hypothesis, p(positive sign) = p(negative sign) = 0.5. So if the number
of non-zero difference scores n > 10, and x is the number of difference scores of one
sign (e.g. positive), we can use the normal approximation to the binomial distribu-
tion to get a quick answer. The mean of this distribution is np = n/2, and the vari-
ance is npq = n/4. So we can calculate a Z score:
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and test that Z score in the usual way (see Handout 1).

Comparing the sign test to the Wilcoxon matched-pairs signed-rank test

From our discussion of the Wilcoxon matched-pairs signed-rank test in Handout 4,
you’ll see that the sign test is pretty similar in overall logic — except that the sign
test throws away even more information about the distribution (it doesn’t care about
the magnitudes of the difference scores at all, just their signs). You pay a price in
power, but gain generality; the sign test is a nonparametric test that can be used with
ordinal or even categorical data.

5.5 Supplementary material: the multinomial distribution

If we want to consider more than two alternatives for each trial, we need to use the
multinomial distribution. Let there be n trials and k alternatives for each trial,
numbered from 1 to k, each with the probabilities p1, p2, … pk. Then the probability
of obtaining exactly X1 outcomes of event1, X2 outcomes of event2, … and Xk out-
comes of eventk is given by

kX
k

XX

k
k ppp
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n
XXXp "

"
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An example: if we had a die with two black sides, three red sides, and one white
side, then for each trial p(black) = 2/6, p(red) = 3/6, and p(white) = 1/6. So if we roll
the die 10 times, then the probability of obtaining exactly 4 blacks, 5 reds, and 1
white is

081.0
6
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!1!5!4

!10
)1,5,4(

154

=























××
=p

5.6 Supplementary material: the χ2 distribution; an outline of deriving the χ2 test

The χ2 distribution

The χ2 probability density functions are shown in the figure below; you can see that
the shape of the distribution depends on the number of degrees of freedom, k. It is a
positively skewed distribution, especially when k is small. The distribution is often

written as 2
dfχ , or sometimes χ2(df). To obtain critical values of χ2, we need to know

the value of χ2 above which (say) 5% of the area falls. In practice, we’ll get this from
tables or a computer.

Relationship between χ2 and the normal distribution

If we have a normal random variable N(µ, σ2), we can sample one value x from it,
convert it to a standard normal variable z, and square it:

2

2
2 )(

σ
µ−= x

z

If we repeated this ad infinitum, sampling independently each time, we would have a
great number of values of z2. We could therefore plot the distribution of z2. We

would find that this distribution is the same as 2
1χ  (χ2 with 1 df):

22
1 z=χ

Now suppose that instead of sampling one number at a time, we sample n numbers
at a time. For each observation within each sample we calculate z2; for each sample,
we calculate Σz2. So each sample produces one value of Σz2. Now we plot the distri-

bution of these values of Σz2. We find that the distribution is the same as 2
nχ :

∑
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In other words, then if Y is the sum of squares of n independent standard normal

The χ2 distribution, shown with 1, 2, 4, and 8 degrees of freedom. You can see that the distribution is positively skewed,
but that as the number of degrees of freedom increases, it becomes more like a normal distribution.
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variables, then Y is distributed as χ2 with n degrees of freedom. (Since 2
iz has a χ2

distribution, this result also shows that the sum of a set of independent values of χ2

itself has a χ2 distribution, given the restrictions of independent sampling and an un-
derlying population with a normal distribution.)

χ2 tells us something about the distribution of sample variances

If we have a normal random variable N(µ, σ2), we can draw an infinite number of
samples from it. From each sample, we can calculate the sample variance s2. We
could then plot the distribution of these sample variances. We would find that it is
related to the χ2 distribution:

2

2
2

1
)1(

σ
χ sn

n
−=− and therefore

1

22
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−
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n
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σχ

Since σ2/(n–1) is constant for a given σ2 and sample size (n), the sampling distribu-

tion of the variance (the distribution of a set of sample variances) has a 2
1−nχ  distri-

bution. Since the χ2 distribution is skewed, this tells us that the distribution of s2 is
too — although the average value of a lot of s2 measurements will equal σ2, more
than half the time s2 will be less than σ2.

Deriving the χ2 test from the binomial distribution (via the normal distribution)

Suppose we ask 100 people to choose between chocolate and garibaldi biscuits.
Let’s say that 65 choose chocolate and 35 choose garibaldi. Does this differ from
chance, i.e. a 50:50 split? We could answer this with the binomial distribution,
B(100, 0.5), but there’d be a lot of adding up to find P(X ≥ 65). So let’s do it a dif-
ferent way. For large sample sizes (e.g. np > 5 and nq > 5), the binomial distribu-
tion B(n, p) approximates the normal distribution N(np, npq). We’ve seen that

2
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where x is sampled from a normal distribution N(µ, σ2). As we know the mean of a
binomial distribution is np and the variance (σ2) is npq, we can derive this approxi-
mation:

npq

npx
z

2
22

1
)( −==χ

To make things easier for later, we’ll call the observed frequencies O1 and O2, and
the expected frequencies E1 and E2. Specifically, E1 = np and E2 = nq, and O1 + O2

= E1 + E2 = n. In our biscuit example, O1 = 65, O2 = 35, E1 = 50, and E2 = 50. Ex-
panding and substituting these in to the previous formula, we would eventually get

nq

nqxn
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or, more generally,
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which is the general formula for χ2 that we’ve been using. This formula also extends
to more than two categories, using the multinomial distribution.

Relevant functions in Excel (see Excel help for full details)

BINOMDIST() Gives you the binomial p.d.f., P(X = x), or c.d.f., P(X ≤ x), where X has a binomial distribution.
CHIDIST() From χ2 and the df, gives you the probability that P(X > χ2), where X has a χ2 distribution.
CHIINV() From p and the df, gives you the critical value of χ2 such that P(X > χ2) = p.
CHITEST() Does a χ2 test for you, working out the df automatically and returning the p value.
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